Skip to main content

ClickHouse教程

从本教程中可以获得什么?

通过学习本教程,您将了解如何设置一个简单的ClickHouse集群。它会很小,但是可以容错和扩展。然后,我们将使用其中一个示例数据集来填充数据并执行一些演示查询。

单节点设置

为了延迟演示分布式环境的复杂性,我们将首先在单个服务器或虚拟机上部署ClickHouse。ClickHouse通常是从debrpm包安装,但对于不支持它们的操作系统也有其他方法

例如,您选择deb安装包,执行:

sudo apt-get install -y apt-transport-https ca-certificates dirmngr
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 8919F6BD2B48D754

echo "deb https://packages.clickhouse.com/deb stable main" | sudo tee \
/etc/apt/sources.list.d/clickhouse.list
sudo apt-get update

sudo apt-get install -y clickhouse-server clickhouse-client

在我们安装的软件中包含这些包:

  • clickhouse-client 包,包含clickhouse-client客户端,它是交互式ClickHouse控制台客户端。
  • clickhouse-common 包,包含一个ClickHouse可执行文件。
  • clickhouse-server 包,包含要作为服务端运行的ClickHouse配置文件。

服务器配置文件位于/etc/clickhouse-server/。在继续之前,请注意config.xml中的<path>元素。它决定了数据存储的位置,因此它应该位于磁盘容量的卷上;默认值是/var/lib/clickhouse/。如果你想调整配置,直接编辑config是不方便的。考虑到它可能会在将来的包更新中被重写。建议重写配置元素的方法是在配置中创建config.d文件夹,作为config.xml的重写方式。

你可能已经注意到了,clickhouse-server安装后不会自动启动。 它也不会在更新后自动重新启动。 您启动服务端的方式取决于您的初始系统,通常情况下是这样:

sudo service clickhouse-server start

sudo /etc/init.d/clickhouse-server start

服务端日志的默认位置是/var/log/clickhouse-server/。当服务端在日志中记录Ready for connections消息,即表示服务端已准备好处理客户端连接。

一旦clickhouse-server启动并运行,我们可以利用clickhouse-client连接到服务端,并运行一些测试查询,如SELECT "Hello, world!";.

Clickhouse-client的快速提示

交互模式:

clickhouse-client
clickhouse-client --host=... --port=... --user=... --password=...

启用多行查询:

clickhouse-client -m
clickhouse-client --multiline

以批处理模式运行查询:

clickhouse-client --query='SELECT 1'
echo 'SELECT 1' | clickhouse-client
clickhouse-client <<< 'SELECT 1'

从指定格式的文件中插入数据:

clickhouse-client --query='INSERT INTO table VALUES' < data.txt
clickhouse-client --query='INSERT INTO table FORMAT TabSeparated' < data.tsv

导入示例数据集

现在是时候用一些示例数据填充我们的ClickHouse服务端。 在本教程中,我们将使用Yandex.Metrica的匿名数据,它是在ClickHouse成为开源之前作为生产环境运行的第一个服务(关于这一点的更多内容请参阅ClickHouse历史)。多种导入Yandex.Metrica数据集方法,为了本教程,我们将使用最现实的一个。

下载并提取表数据

curl https://datasets.clickhouse.com/hits/tsv/hits_v1.tsv.xz | unxz --threads=`nproc` > hits_v1.tsv
curl https://datasets.clickhouse.com/visits/tsv/visits_v1.tsv.xz | unxz --threads=`nproc` > visits_v1.tsv

提取的文件大小约为10GB。

创建表

与大多数数据库管理系统一样,ClickHouse在逻辑上将表分组为数据库。包含一个default数据库,但我们将创建一个新的数据库tutorial:

clickhouse-client --query "CREATE DATABASE IF NOT EXISTS tutorial"

与创建数据库相比,创建表的语法要复杂得多(请参阅参考资料. 一般CREATE TABLE声明必须指定三个关键的事情:

  1. 要创建的表的名称。
  2. 表结构,例如:列名和对应的数据类型
  3. 表引擎及其设置,这决定了对此表的查询操作是如何在物理层面执行的所有细节。

Yandex.Metrica是一个网络分析服务,样本数据集不包括其全部功能,因此只有两个表可以创建:

  • hits 表包含所有用户在服务所涵盖的所有网站上完成的每个操作。
  • visits 表包含预先构建的会话,而不是单个操作。

让我们看看并执行这些表的实际创建表查询:

CREATE TABLE tutorial.hits_v1
(
`WatchID` UInt64,
`JavaEnable` UInt8,
`Title` String,
`GoodEvent` Int16,
`EventTime` DateTime,
`EventDate` Date,
`CounterID` UInt32,
`ClientIP` UInt32,
`ClientIP6` FixedString(16),
`RegionID` UInt32,
`UserID` UInt64,
`CounterClass` Int8,
`OS` UInt8,
`UserAgent` UInt8,
`URL` String,
`Referer` String,
`URLDomain` String,
`RefererDomain` String,
`Refresh` UInt8,
`IsRobot` UInt8,
`RefererCategories` Array(UInt16),
`URLCategories` Array(UInt16),
`URLRegions` Array(UInt32),
`RefererRegions` Array(UInt32),
`ResolutionWidth` UInt16,
`ResolutionHeight` UInt16,
`ResolutionDepth` UInt8,
`FlashMajor` UInt8,
`FlashMinor` UInt8,
`FlashMinor2` String,
`NetMajor` UInt8,
`NetMinor` UInt8,
`UserAgentMajor` UInt16,
`UserAgentMinor` FixedString(2),
`CookieEnable` UInt8,
`JavascriptEnable` UInt8,
`IsMobile` UInt8,
`MobilePhone` UInt8,
`MobilePhoneModel` String,
`Params` String,
`IPNetworkID` UInt32,
`TraficSourceID` Int8,
`SearchEngineID` UInt16,
`SearchPhrase` String,
`AdvEngineID` UInt8,
`IsArtifical` UInt8,
`WindowClientWidth` UInt16,
`WindowClientHeight` UInt16,
`ClientTimeZone` Int16,
`ClientEventTime` DateTime,
`SilverlightVersion1` UInt8,
`SilverlightVersion2` UInt8,
`SilverlightVersion3` UInt32,
`SilverlightVersion4` UInt16,
`PageCharset` String,
`CodeVersion` UInt32,
`IsLink` UInt8,
`IsDownload` UInt8,
`IsNotBounce` UInt8,
`FUniqID` UInt64,
`HID` UInt32,
`IsOldCounter` UInt8,
`IsEvent` UInt8,
`IsParameter` UInt8,
`DontCountHits` UInt8,
`WithHash` UInt8,
`HitColor` FixedString(1),
`UTCEventTime` DateTime,
`Age` UInt8,
`Sex` UInt8,
`Income` UInt8,
`Interests` UInt16,
`Robotness` UInt8,
`GeneralInterests` Array(UInt16),
`RemoteIP` UInt32,
`RemoteIP6` FixedString(16),
`WindowName` Int32,
`OpenerName` Int32,
`HistoryLength` Int16,
`BrowserLanguage` FixedString(2),
`BrowserCountry` FixedString(2),
`SocialNetwork` String,
`SocialAction` String,
`HTTPError` UInt16,
`SendTiming` Int32,
`DNSTiming` Int32,
`ConnectTiming` Int32,
`ResponseStartTiming` Int32,
`ResponseEndTiming` Int32,
`FetchTiming` Int32,
`RedirectTiming` Int32,
`DOMInteractiveTiming` Int32,
`DOMContentLoadedTiming` Int32,
`DOMCompleteTiming` Int32,
`LoadEventStartTiming` Int32,
`LoadEventEndTiming` Int32,
`NSToDOMContentLoadedTiming` Int32,
`FirstPaintTiming` Int32,
`RedirectCount` Int8,
`SocialSourceNetworkID` UInt8,
`SocialSourcePage` String,
`ParamPrice` Int64,
`ParamOrderID` String,
`ParamCurrency` FixedString(3),
`ParamCurrencyID` UInt16,
`GoalsReached` Array(UInt32),
`OpenstatServiceName` String,
`OpenstatCampaignID` String,
`OpenstatAdID` String,
`OpenstatSourceID` String,
`UTMSource` String,
`UTMMedium` String,
`UTMCampaign` String,
`UTMContent` String,
`UTMTerm` String,
`FromTag` String,
`HasGCLID` UInt8,
`RefererHash` UInt64,
`URLHash` UInt64,
`CLID` UInt32,
`YCLID` UInt64,
`ShareService` String,
`ShareURL` String,
`ShareTitle` String,
`ParsedParams` Nested(
Key1 String,
Key2 String,
Key3 String,
Key4 String,
Key5 String,
ValueDouble Float64),
`IslandID` FixedString(16),
`RequestNum` UInt32,
`RequestTry` UInt8
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
CREATE TABLE tutorial.visits_v1
(
`CounterID` UInt32,
`StartDate` Date,
`Sign` Int8,
`IsNew` UInt8,
`VisitID` UInt64,
`UserID` UInt64,
`StartTime` DateTime,
`Duration` UInt32,
`UTCStartTime` DateTime,
`PageViews` Int32,
`Hits` Int32,
`IsBounce` UInt8,
`Referer` String,
`StartURL` String,
`RefererDomain` String,
`StartURLDomain` String,
`EndURL` String,
`LinkURL` String,
`IsDownload` UInt8,
`TraficSourceID` Int8,
`SearchEngineID` UInt16,
`SearchPhrase` String,
`AdvEngineID` UInt8,
`PlaceID` Int32,
`RefererCategories` Array(UInt16),
`URLCategories` Array(UInt16),
`URLRegions` Array(UInt32),
`RefererRegions` Array(UInt32),
`IsYandex` UInt8,
`GoalReachesDepth` Int32,
`GoalReachesURL` Int32,
`GoalReachesAny` Int32,
`SocialSourceNetworkID` UInt8,
`SocialSourcePage` String,
`MobilePhoneModel` String,
`ClientEventTime` DateTime,
`RegionID` UInt32,
`ClientIP` UInt32,
`ClientIP6` FixedString(16),
`RemoteIP` UInt32,
`RemoteIP6` FixedString(16),
`IPNetworkID` UInt32,
`SilverlightVersion3` UInt32,
`CodeVersion` UInt32,
`ResolutionWidth` UInt16,
`ResolutionHeight` UInt16,
`UserAgentMajor` UInt16,
`UserAgentMinor` UInt16,
`WindowClientWidth` UInt16,
`WindowClientHeight` UInt16,
`SilverlightVersion2` UInt8,
`SilverlightVersion4` UInt16,
`FlashVersion3` UInt16,
`FlashVersion4` UInt16,
`ClientTimeZone` Int16,
`OS` UInt8,
`UserAgent` UInt8,
`ResolutionDepth` UInt8,
`FlashMajor` UInt8,
`FlashMinor` UInt8,
`NetMajor` UInt8,
`NetMinor` UInt8,
`MobilePhone` UInt8,
`SilverlightVersion1` UInt8,
`Age` UInt8,
`Sex` UInt8,
`Income` UInt8,
`JavaEnable` UInt8,
`CookieEnable` UInt8,
`JavascriptEnable` UInt8,
`IsMobile` UInt8,
`BrowserLanguage` UInt16,
`BrowserCountry` UInt16,
`Interests` UInt16,
`Robotness` UInt8,
`GeneralInterests` Array(UInt16),
`Params` Array(String),
`Goals` Nested(
ID UInt32,
Serial UInt32,
EventTime DateTime,
Price Int64,
OrderID String,
CurrencyID UInt32),
`WatchIDs` Array(UInt64),
`ParamSumPrice` Int64,
`ParamCurrency` FixedString(3),
`ParamCurrencyID` UInt16,
`ClickLogID` UInt64,
`ClickEventID` Int32,
`ClickGoodEvent` Int32,
`ClickEventTime` DateTime,
`ClickPriorityID` Int32,
`ClickPhraseID` Int32,
`ClickPageID` Int32,
`ClickPlaceID` Int32,
`ClickTypeID` Int32,
`ClickResourceID` Int32,
`ClickCost` UInt32,
`ClickClientIP` UInt32,
`ClickDomainID` UInt32,
`ClickURL` String,
`ClickAttempt` UInt8,
`ClickOrderID` UInt32,
`ClickBannerID` UInt32,
`ClickMarketCategoryID` UInt32,
`ClickMarketPP` UInt32,
`ClickMarketCategoryName` String,
`ClickMarketPPName` String,
`ClickAWAPSCampaignName` String,
`ClickPageName` String,
`ClickTargetType` UInt16,
`ClickTargetPhraseID` UInt64,
`ClickContextType` UInt8,
`ClickSelectType` Int8,
`ClickOptions` String,
`ClickGroupBannerID` Int32,
`OpenstatServiceName` String,
`OpenstatCampaignID` String,
`OpenstatAdID` String,
`OpenstatSourceID` String,
`UTMSource` String,
`UTMMedium` String,
`UTMCampaign` String,
`UTMContent` String,
`UTMTerm` String,
`FromTag` String,
`HasGCLID` UInt8,
`FirstVisit` DateTime,
`PredLastVisit` Date,
`LastVisit` Date,
`TotalVisits` UInt32,
`TraficSource` Nested(
ID Int8,
SearchEngineID UInt16,
AdvEngineID UInt8,
PlaceID UInt16,
SocialSourceNetworkID UInt8,
Domain String,
SearchPhrase String,
SocialSourcePage String),
`Attendance` FixedString(16),
`CLID` UInt32,
`YCLID` UInt64,
`NormalizedRefererHash` UInt64,
`SearchPhraseHash` UInt64,
`RefererDomainHash` UInt64,
`NormalizedStartURLHash` UInt64,
`StartURLDomainHash` UInt64,
`NormalizedEndURLHash` UInt64,
`TopLevelDomain` UInt64,
`URLScheme` UInt64,
`OpenstatServiceNameHash` UInt64,
`OpenstatCampaignIDHash` UInt64,
`OpenstatAdIDHash` UInt64,
`OpenstatSourceIDHash` UInt64,
`UTMSourceHash` UInt64,
`UTMMediumHash` UInt64,
`UTMCampaignHash` UInt64,
`UTMContentHash` UInt64,
`UTMTermHash` UInt64,
`FromHash` UInt64,
`WebVisorEnabled` UInt8,
`WebVisorActivity` UInt32,
`ParsedParams` Nested(
Key1 String,
Key2 String,
Key3 String,
Key4 String,
Key5 String,
ValueDouble Float64),
`Market` Nested(
Type UInt8,
GoalID UInt32,
OrderID String,
OrderPrice Int64,
PP UInt32,
DirectPlaceID UInt32,
DirectOrderID UInt32,
DirectBannerID UInt32,
GoodID String,
GoodName String,
GoodQuantity Int32,
GoodPrice Int64),
`IslandID` FixedString(16)
)
ENGINE = CollapsingMergeTree(Sign)
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
SAMPLE BY intHash32(UserID)

您可以使用clickhouse-client的交互模式执行这些查询(只需在终端中启动它,而不需要提前指定查询)。或者如果你愿意,可以尝试一些替代接口

正如我们所看到的, hits_v1使用 MergeTree引擎,而visits_v1使用 Collapsing引擎。

导入数据

数据导入到ClickHouse是通过INSERT INTO方式完成的,查询类似许多SQL数据库。然而,数据通常是在一个提供支持序列化格式而不是VALUES子句(也支持)。

我们之前下载的文件是以制表符分隔的格式,所以这里是如何通过控制台客户端导入它们:

clickhouse-client --query "INSERT INTO tutorial.hits_v1 FORMAT TSV" --max_insert_block_size=100000 < hits_v1.tsv
clickhouse-client --query "INSERT INTO tutorial.visits_v1 FORMAT TSV" --max_insert_block_size=100000 < visits_v1.tsv

ClickHouse有很多要调整的设置在控制台客户端中指定它们的一种方法是通过参数,就像我们看到上面语句中的--max_insert_block_size。找出可用的设置、含义及其默认值的最简单方法是查询system.settings 表:

SELECT name, value, changed, description
FROM system.settings
WHERE name LIKE '%max_insert_b%'
FORMAT TSV

max_insert_block_size 1048576 0 "The maximum block size for insertion, if we control the creation of blocks for insertion."

您也可以OPTIMIZE导入后的表。使用MergeTree-family引擎配置的表总是在后台合并数据部分以优化数据存储(或至少检查是否有意义)。 这些查询强制表引擎立即进行存储优化,而不是稍后一段时间执行:

clickhouse-client --query "OPTIMIZE TABLE tutorial.hits_v1 FINAL"
clickhouse-client --query "OPTIMIZE TABLE tutorial.visits_v1 FINAL"

这些查询开始I/O和CPU密集型操作,所以如果表一直接收到新数据,最好不要管它,让合并在后台运行。

现在我们可以检查表导入是否成功:

clickhouse-client --query "SELECT COUNT(*) FROM tutorial.hits_v1"
clickhouse-client --query "SELECT COUNT(*) FROM tutorial.visits_v1"

查询示例

SELECT
StartURL AS URL,
AVG(Duration) AS AvgDuration
FROM tutorial.visits_v1
WHERE StartDate BETWEEN '2014-03-23' AND '2014-03-30'
GROUP BY URL
ORDER BY AvgDuration DESC
LIMIT 10
SELECT
sum(Sign) AS visits,
sumIf(Sign, has(Goals.ID, 1105530)) AS goal_visits,
(100. * goal_visits) / visits AS goal_percent
FROM tutorial.visits_v1
WHERE (CounterID = 912887) AND (toYYYYMM(StartDate) = 201403) AND (domain(StartURL) = 'yandex.ru')

集群部署

ClickHouse集群是一个同质集群。 设置步骤:

  1. 在群集的所有机器上安装ClickHouse服务端
  2. 在配置文件中设置集群配置
  3. 在每个实例上创建本地表
  4. 创建一个分布式表

分布式表实际上是一种view,映射到ClickHouse集群的本地表。 从分布式表中执行SELECT查询会使用集群所有分片的资源。 您可以为多个集群指定configs,并创建多个分布式表,为不同的集群提供视图。

具有三个分片,每个分片一个副本的集群的示例配置:

<remote_servers>
<perftest_3shards_1replicas>
<shard>
<replica>
<host>example-perftest01j.yandex.ru</host>
<port>9000</port>
</replica>
</shard>
<shard>
<replica>
<host>example-perftest02j.yandex.ru</host>
<port>9000</port>
</replica>
</shard>
<shard>
<replica>
<host>example-perftest03j.yandex.ru</host>
<port>9000</port>
</replica>
</shard>
</perftest_3shards_1replicas>
</remote_servers>

为了进一步演示,让我们使用和创建hits_v1表相同的CREATE TABLE语句创建一个新的本地表,但表名不同:

CREATE TABLE tutorial.hits_local (...) ENGINE = MergeTree() ...

创建提供集群本地表视图的分布式表:

CREATE TABLE tutorial.hits_all AS tutorial.hits_local
ENGINE = Distributed(perftest_3shards_1replicas, tutorial, hits_local, rand());

常见的做法是在集群的所有计算机上创建类似的分布式表。 它允许在群集的任何计算机上运行分布式查询。 还有一个替代选项可以使用以下方法为给定的SELECT查询创建临时分布式表远程表功能。

让我们运行INSERT SELECT将该表传播到多个服务器。

INSERT INTO tutorial.hits_all SELECT * FROM tutorial.hits_v1;

正如您所期望的那样,如果计算量大的查询使用3台服务器而不是一个,则运行速度快N倍。

在这种情况下,我们使用了具有3个分片的集群,每个分片都包含一个副本。

为了在生产环境中提供弹性,我们建议每个分片应包含分布在多个可用区或数据中心(或至少机架)之间的2-3个副本。 请注意,ClickHouse支持无限数量的副本。

包含三个副本的一个分片集群的示例配置:

<remote_servers>
...
<perftest_1shards_3replicas>
<shard>
<replica>
<host>example-perftest01j.yandex.ru</host>
<port>9000</port>
</replica>
<replica>
<host>example-perftest02j.yandex.ru</host>
<port>9000</port>
</replica>
<replica>
<host>example-perftest03j.yandex.ru</host>
<port>9000</port>
</replica>
</shard>
</perftest_1shards_3replicas>
</remote_servers>

启用本机复制Zookeeper是必需的。 ClickHouse负责所有副本的数据一致性,并在失败后自动运行恢复过程。建议将ZooKeeper集群部署在单独的服务器上(其中没有其他进程,包括运行的ClickHouse)。

Note

ZooKeeper不是一个严格的要求:在某些简单的情况下,您可以通过将数据写入应用程序代码中的所有副本来复制数据。 这种方法是建议的,在这种情况下,ClickHouse将无法保证所有副本上的数据一致性。 因此需要由您的应用来保证这一点。

ZooKeeper位置在配置文件中指定:

<zookeeper>
<node>
<host>zoo01.yandex.ru</host>
<port>2181</port>
</node>
<node>
<host>zoo02.yandex.ru</host>
<port>2181</port>
</node>
<node>
<host>zoo03.yandex.ru</host>
<port>2181</port>
</node>
</zookeeper>

此外,我们需要设置宏来识别每个用于创建表的分片和副本:

<macros>
<shard>01</shard>
<replica>01</replica>
</macros>

如果在创建复制表时没有副本,则会实例化新的第一个副本。 如果已有实时副本,则新副本将克隆现有副本中的数据。 您可以选择首先创建所有复制的表,然后向其中插入数据。 另一种选择是创建一些副本,并在数据插入之后或期间添加其他副本。

CREATE TABLE tutorial.hits_replica (...)
ENGINE = ReplcatedMergeTree(
'/clickhouse_perftest/tables/{shard}/hits',
'{replica}'
)
...

在这里,我们使用ReplicatedMergeTree表引擎。 在参数中,我们指定包含分片和副本标识符的ZooKeeper路径。

INSERT INTO tutorial.hits_replica SELECT * FROM tutorial.hits_local;

复制在多主机模式下运行。数据可以加载到任何副本中,然后系统自动将其与其他实例同步。复制是异步的,因此在给定时刻,并非所有副本都可能包含最近插入的数据。至少应该有一个副本允许数据摄入。另一些则会在重新激活后同步数据并修复一致性。请注意,这种方法允许最近插入的数据丢失的可能性很低。

Try ClickHouse Cloud for FREE

Easy data ingestion, automatic scaling, built-in SQL console and lots more.

Try it for Free